
IRABF 2021 Volume 13 Number 1 

17 
 

 

International Review of 

Accounting, Banking and Finance 

Vol 13, No. 1, Spring, 2021, Pages 17-31 

IRABF 

○C 2021 

 

Pricing Average Interest Rate Options in the LIBOR Market Model 

Jui-Jane Chang1, Pao-Hsien Huang*,2, Kun-Li Lin3 and Jung-Hsuan Lin4 

1. Associate Professor at Department of Financial Engineering and Actuarial Mathematics, 
Soochow University, Taipei, Taiwan (R.O.C.) 

2. Assistant Professor at Department of Finance, Southern Taiwan University of Science and 
Technology, Tainan City, Taiwan (R.O.C.) 

3. Professor at Department of Business management, National Taichung University of Science 
and Technology, Taichung City, Taiwan (R.O.C.) 

4. Assistant Professor at Department of Finance, Southern Taiwan University of Science and 
Technology, Tainan City, Taiwan (R.O.C.) 

 
 
Accepted March 2021 

A B S T R A C T 
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which provides an alternative instrument to hedge interest rate risks at a lower cost. The 
forward LIBOR rates, modeled in the LMM, exhibit positive rates and are market-observable, 
which avoids pricing errors arising from negative rates and is easier for calibration. The 
underlying average rate is calculated by summing LIBOR rates rather than integrating 
instantaneous short rates, which makes our resulting formulas consistent with market 
practice. The resulting pricing formulas of average interest rate options are shown to be 
accurate as compared with the Monte Carlo simulation. The calibration procedure and its 
practical implementation are also examined. 
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1. Introduction 

Hedging against interest rate risks has become one of the most important tasks for a financial manager. 
To manage these risks, many interest rate derivatives, such as forward rate agreements, caps, floors, 
swaps, and swaptions, have been developed and traded actively. These days, besides achieving hedging 
needs, hedgers further want to reduce their hedging costs, which gives a big challenge and a new 
direction to financial engineers. To accomplish this purpose, average interest rate options (AIROs) have 
recently been developed to lower the cost of hedging interest rate risks, and thus become increasingly 
popular. 

Interest rate caps are one of the most actively traded interest rate derivatives. It is well known that 
a cap is a portfolio of interest rate call options which pay the holder some pre-specified market interest 
rates minus a cap rate (if positive) or zero (if non-positive), on a pre-agreed notional principal. Therefore, 
an interest rate cap can be employed to hedge separately interest rate risks of the future cash flows by 
putting a ceiling on their borrowing interest costs at a cap rate. However, some investors may desire to 
hedge their average interest costs of overall cash flows rather than individual ones. To achieving this 
purpose, AIROs are developed and provide for financial practitioners a cheaper and more efficient 
hedging tool. 

AIROs are interest rate options, whose underlying rates are calculated by an arithmetic average of 
some pre-specified interest rates (e.g. LIBOR rates) over a given time interval. Unlike interest rate caps, 
AIROs can ceil the average (rather than individual) interest costs at a cap rate. Moreover, if an investor 
wants to hedge average interest costs, hedging with an AIRO is cheaper than with the corresponding 
caps (or floors).1  Since most financial institutions take huge and complicated positions involved with 
interest rate risks by issuing many kinds of interest rate-related products, such as interest rate-linked 
structure notes, interest rate swaps, etc., AIROs can be employed to hedge the overall average interest 
rate risks in a more efficient way. In addition, AIROs are less liable to unanticipated events or the market 
manipulation by the options’ counterparties since their final payoffs depend on the average interest rate 
during their life, which makes AIROs become a more trustworthy hedging tool. Due to these advantages, 
AIROs have been widely-traded in the over-the-counter market. 

Some earlier research has been conducted on the pricing of AIROs. Within the Vasicek (1977) 
interest rate model, Longstaff (1995) derives analytic pricing formulas for AIROs. However, the 
underlying average rate is calculated continuously on the basis of abstract short rates rather than LIBOR 
rates, which is inconsistent with market practice.2  Based on the Hull and White (1990, HW) interest 
rate model, Cheuk and Vorst (1999, CV) modify the setting of the underlying average rate in Longstaff 
(1995) by computing discretely the arithmetic average of LIBOR rates. However, the LIBOR rates in 
CV (1999) are transformed from the market-unobservable short rates, and the transformation process 
would make the resulting pricing formula more complicated. Moreover, the short rates specified in both 
Vasicek and HW are Gaussian processes, so the negative rates may occur and lead to some pricing 
error.3  In addition, the HW model cannot capture the correlations between rates of different terms as 
realistically as the LIBOR market model (hereafter, LMM), and this may affect the accuracy of pricing 
AIROs. 

The main purpose of this paper is to price AIROs within the LIBOR market model (LMM) 
framework. The LMM is developed by Brace, Gatarek, and Musiela (1997, BGM), Musiela and 

                                                             
1 This statement is proved in Appendix A. 
2  The underlying average rate in Longstaff (1995) is 𝐴ሺ𝑇ሻ ൌ ቀ׬

்
଴ 𝑟௨𝑑𝑢ቁ /𝑇 , where 𝑟௧  is the instantaneous short rate. 

However, market practice is that 𝐴ሺ𝑇ሻ ൌ ∑௡௜ୀଵ 𝐿ሺ𝑡௜ , 𝑡௜ሻ/𝑛, where 𝐿ሺ𝑡௜ , 𝑡௜ሻ stands for LIBOR rate observed at time 𝑡௜ . 
3 Rogers (1996) indicated that the Gaussian term structure model has an important theoretical limitation: the rate can 
attain negative values with positive probability which may cause some pricing error in many cases. 
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Rutkowski (1997), and Miltersen, Sandermann, and Sondermann (1997). The rate specified in the LMM 
is a market-observable LIBOR rate which is commonly used in the financial industry. Therefore, pricing 
AIROs based on the LMM can avoid the complicated transformation from short rates to LIBOR rates, 
such as Longstaff (1995) and CV (1999), making the resulting pricing formula full of financial-
economic intuitions. The resulting pricing formula of AIROS bears resemblance to the Black (1976) 
pricing model for options on futures in the environment of stochastic interest rates, and thus provides 
end-users a familiarity to use it. The LIBOR rate modeled in LMM is lognormally distributed, 
preventing the negative rate problem. The most important advantage of the LMM over the short rate 
models is its ease and flexibility in the parameter calibration. The LMM can simultaneously calibrate 
the market-quoted cap volatilities and the correlation matrix of the underlying forward LIBOR rates. 
Equipped with these advantages, pricing AIROs under the LMM is more suitable for practical 
implementation. 

The paper is organized as follows. Section 2 specifies the approximate lognormal LMM model and 
introduces different approximate lognormal dynamics under the mechanism of changing the numéraire. 
Section 3 outlines the contracts of a general AIRO and presents an approximation method to derive the 
closed-form solutions of the AIRO. Section 4 provides the calibration procedure and examines the 
accuracy of the approximate formulas based on the Monte Carlo simulation. The conclusion is made in 
the last section. 

2. The Model 

We assume that trading takes place continuously in time over an interval [0,𝒯], 0 ൏ 𝒯 ൏ ∞. The 
uncertainty is described by the filtered spot martingale probability space ൫Ω,ℱ,𝒬, ሼℱ௧ሽ௧∈ሾ଴,ఛሿ൯ where the 
filtration is generated by the independent standard Brownian motions 𝑍ሺ𝑡ሻ ൌ ሺ𝑍ଵሺ𝑡ሻ,𝑍ଶሺ𝑡ሻ, . . . ,𝑍௠ሺ𝑡ሻሻ. 
Note that 𝒬 represents the spot martingale probability measure. We list the notations as follows. 

 
𝐵ሺ𝑡,𝑇ሻ= the time-𝑡 price of a zero-coupon bond (ZCB) paying one dollar at time 𝑇. 
𝐹ሺ𝑡,𝑇ሻ= the forward LIBOR rate contracted at time 𝑡 and applied to the period [𝑇, 𝑇 ൅

𝛿] with 0 ൑ 𝑡 ൑ 𝑇 ൑ 𝑇 ൅ 𝛿 ൑ 𝒯. 
𝒬்= the martingale measure with respective to the numéraire 𝐵ሺ⋅,𝑇ሻ. 

 
 The relationship between 𝐹ሺ𝑡,𝑇ሻ and 𝐵ሺ𝑡,𝑇ሻ can be expressed as follows:  

 𝐹ሺ𝑡,𝑇ሻ ൌ
ଵ

ఋ
ሺ𝐵ሺ𝑡,𝑇ሻ െ 𝐵ሺ𝑡,𝑇 ൅ 𝛿ሻሻ/𝐵ሺ𝑡,𝑇 ൅ 𝛿ሻ. (1) 

Based on the result of Heath, Jarrow, and Morton (1992), BGM (1997) models interest rates in 
terms of the forward LIBOR rates. We specify briefly their results as follows.  
 
Assumption 1 
 𝑇ℎ𝑒  𝐿𝐼𝐵𝑂𝑅  𝑅𝑎𝑡𝑒  𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠  𝑢𝑛𝑑𝑒𝑟  𝑡ℎ𝑒  𝑀𝑒𝑎𝑠𝑢𝑟𝑒  𝒬 

  The dynamics of the LIBOR rate 𝐹ሺ𝑡,𝑇ሻ under the spot martingale measure 𝒬 is given as follows:  
 𝑑𝐹ሺ𝑡,𝑇ሻ ൌ 𝐹ሺ𝑡,𝑇ሻ𝛾ሺ𝑡,𝑇ሻ ⋅ 𝜎ሺ𝑡,𝑇 ൅ 𝛿ሻ𝑑𝑡 ൅ 𝐹ሺ𝑡,𝑇ሻ𝛾ሺ𝑡,𝑇ሻ ⋅ 𝑑𝑍ሺ𝑡ሻ, (2) 

where 0 ൑ 𝑡 ൑ 𝑇 ൑ 𝒯, 𝛾ሺ𝑡,𝑇ሻ:ℛା
ଶ   →   ℛ௠ is a bounded, piecewise continuous, deterministic vector 

function, and 𝜎ሺ𝑡,⋅ሻ is defined as follows:  

 𝜎ሺ𝑡,𝑇ሻ ൌ ൞
∑⌊ఋ

షభሺ்ି௧ሻ⌋
௝ୀଵ

ఋிሺ௧,்ି௝ఋሻ

ଵାఋிሺ௧,்ି௝ఋሻ
𝛾ሺ𝑡,𝑇 െ 𝑗𝛿ሻ 𝑡 ∈ ሾ0,𝑇 െ 𝛿ሿ

&  𝑇 െ 𝛿 ൐ 0,
0 otherwise,

 (3) 

 
where ⌊𝛿ିଵሺ𝑇 െ 𝑡ሻ⌋ denotes the greatest integer that is less than 𝛿ିଵሺ𝑇 െ 𝑡ሻ.  
According to the definition of the bond volatility process (3), ሼ𝜎ሺ𝑡,𝑇 ൅ 𝛿ሻሽ௧∈ሾ଴,்ାఋሿ is stochastic 
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rather than deterministic. Thus, the stochastic differential equation (2) can not be solved, and thus the 
distribution of 𝐹ሺ𝑇,𝑇ሻ  is unknown. However, given a fixed initial time, assumed time 0 , we can 
approximate 𝜎ሺ𝑡,𝑇ሻ by 𝜎ത଴ሺ𝑡,𝑇ሻ which is defined by 

 𝜎ത଴ሺ𝑡,𝑇ሻ ൌ ൞
∑⌊ఋ

షభሺ்ି௧ሻ⌋
௝ୀଵ

ఋிሺ଴,்ି௝ఋሻ

ଵାఋிሺ଴,்ି௝ఋሻ
𝛾ሺ𝑡,𝑇 െ 𝑗𝛿ሻ, 𝑡 ∈ ሾ0,𝑇 െ 𝛿ሿ

&  𝑇 െ 𝛿 ൐ 0,
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,

 (4) 

where 0 ൑ 𝑡 ൑ 𝑇. It means that the calendar time of the process ሼ𝐹ሺ𝑡,𝑇ሻሽ௧∈ሾ଴,்ሿ in (4) is frozen at its 
initial time 0 and thus the process ሼ𝜎ത଴ሺ𝑡,𝑇ሻሽ௧∈ሾ଴,்ሿ becomes deterministic. By substituting 𝜎ത଴ሺ𝑡,𝑇 ൅ 𝛿ሻ 
for 𝜎ሺ𝑡,𝑇 ൅ 𝛿ሻ in the drift term of (2), the drift and the volatility terms in (2) will be deterministic, so 
we can solve (2) and find the approximate distribution of 𝐹ሺ𝑇,𝑇ሻ to be lognormally distributed. This 
argument is the Wiener chaos order 0 approximation which is first used by BGM (1997) for pricing 
interest rate swaptions. It was developed further in Brace, Dun, and Barton (1998) and formalized by 
Brace and Womersley (2000). The accuracy of this approximation for the pricing formula of AIROs (to 
be derived later) will be shown to be sufficiently accurate. 
 
Proposition 1 
 𝑇ℎ𝑒  𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒  𝐿𝐼𝐵𝑂𝑅  𝑅𝑎𝑡𝑒  𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠  𝑢𝑛𝑑𝑒𝑟  𝑡ℎ𝑒  𝑀𝑒𝑎𝑠𝑢𝑟𝑒  𝒬 

The approximate dynamics of the LIBOR rate 𝐹ሺ𝑡,𝑇ሻ under the spot martingale measure 𝒬  is 
given as follows:  

 
ௗிሺ௧,்ሻ

ிሺ௧,்ሻ
ൌ 𝛾ሺ𝑡,𝑇ሻ ⋅ 𝜎ത଴ሺ𝑡,𝑇 ൅ 𝛿ሻ𝑑𝑡 ൅ 𝛾ሺ𝑡,𝑇ሻ ⋅ 𝑑𝑍ሺ𝑡ሻ, (5) 

 where 0 ൑ 𝑡 ൑ 𝑇 ൑ 𝒯.  
 

The following proposition specifies the general rule under which the LIBOR rate dynamics change 
when the underlying probability measure is altered. This rule is useful for deriving the pricing formulas 
of the AIROs. 
 
Proposition 2  
𝑻𝒉𝒆  𝑨𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆  𝑳𝑰𝑩𝑶𝑹  𝑹𝒂𝒕𝒆  𝑫𝒚𝒏𝒂𝒎𝒊𝒄𝒔  𝒖𝒏𝒅𝒆𝒓  𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕  𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒔 

The dynamics of the LIBOR rate 𝐹ሺ𝑡,𝑇ሻ under an arbitrary forward martingale measure 𝒬௎  is 
given as follows: 

 
ௗிሺ௧,்ሻ

ிሺ௧,்ሻ
ൌ 𝛾ሺ𝑡,𝑇ሻ ⋅ ሺ𝜎ത଴ሺ𝑡,𝑇 ൅ 𝛿ሻ െ 𝜎ത଴ሺ𝑡,𝑈ሻሻ𝑑𝑡 ൅ 𝛾ሺ𝑡,𝑇ሻ ⋅ 𝑑𝑍ሺ𝑡ሻ, (6) 

 where 0 ൑ 𝑡  ൑ minሺ𝑈,𝑇ሻ ൑ 𝒯.4  
 

Having briefly introduced the BGM model, we next employ it to derive the pricing formulas of the 
AIROs in the following section. 

3. Pricing Average Interest Rate Options 

The payoff structure of an AIRO is defined as follows. Suppose that an AIRO is issued at time 0  ሺൌ 𝑡଴ሻ 
and expires at time 𝑇  ሺൌ 𝑡௡ାଵሻ. The underlying average rate is observed on 𝑛 different occasions during 
the life of the option. The observation times are denoted by ሼ𝑡ଵ, 𝑡ଶ, . . . , 𝑡௡ሽ where 𝑡௜ ൏ 𝑡௜ାଵ  for 𝑖 ൌ
0,1, . . . ,𝑛. For simplicity, we assume 𝛿 ൌ 𝑡௜ାଵ െ 𝑡௜ for 𝑖 ൌ 0,1,2, . . . ,𝑛. Let K denote the exercise rate. 
Then, the final payoff of an average interest rate call (AIRC) and an average interest rate put (AIRP) at 
                                                             
4 We employ 𝑍ሺ𝑡ሻ to denote an independent 𝑚-dimensional standard Brownian motion under an arbitrary measure 
without causing any confusion. 
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time 𝑇 is defined, respectively, as follows:  

𝐴𝐼𝑅𝐶ሺ𝑇ሻ ൌ Maxሺ𝐴ሺ𝑇ሻ െ 𝐾, 0ሻ, (7) 

 and  

 𝐴𝐼𝑅𝑃ሺ𝑇ሻ ൌ Maxሺ𝐾 െ 𝐴ሺ𝑇ሻ,0ሻ, (8) 

 where  

 𝐴ሺ𝑇ሻ ൌ
ଵ

௡
∑௡௜ୀଵ 𝐹ሺ𝑡௜ , 𝑡௜ሻ. (9) 

The final payoffs in (7) and (8) depend on the discrete average of the market-observable LIBOR 
rates rather than the continuous average of the abstract short rates given in Longstaff (1995). Therefore, 
our payoff setting is consistent with practical implementation. Moreover, the LIBOR rate in (7) and (8) 
are specified directly in the LMM rather than transformed from the abstract short rate, which avoids a 
complicated transformation calculation. 

Based on the martingale pricing method, the issuing price of the AIRC and AIRP can be obtained, 
respectively, by solving the following expectation:  

 𝐵ሺ0,𝑇ሻ 𝐸 ொ
೅
ሾMaxሺ𝐴ሺ𝑇ሻ െ 𝐾, 0ሻሿ, (10) 

 and  

 𝐵ሺ0,𝑇ሻ 𝐸 ொ
೅
ሾMaxሺ𝐾 െ 𝐴ሺ𝑇ሻ,0ሻሿ. (11) 

As the problem in pricing ordinary Asian options that the arithmetic average of lognormally-
distributed variables is not lognormally distributed, the distribution of 𝐴ሺ𝑇ሻ is unknown. Hence, (10) 
and (11) cannot be solved analytically as closed-form solutions. Levy (1992) employed the Wilkinson 
approximation method to price analytically Asian currency options. However, his approximation only 
matches the first two moments and thus leading to some pricing errors in some special financial 
environment. To increase the pricing accuracy, we adopt the Jarrow and Rudd (1982) approximation 
method, which uses the first four moments, to deriving the approximate pricing formulas of AIROs, 
whose accuracy is examined with the Monte Carlo simulation in the next section. 

Based on the Wilkinson approximation, we replace the unknown distribution of the arithmetic 
average of lognormal random variables with a lognormal distribution that has the correct first two 
moments. In this way, 𝐴ሺ𝑇ሻ has an approximately lognormal distribution, and (10) and (11) can be 
solved. 

Hence, we assume that ln𝐴ሺ𝑇ሻ has a normal distribution with mean 𝑀  and variance 𝑉ଶ . The 
moment generating function for ln𝐴ሺ𝑇ሻ is given by  

 M୪୬஺ሺ்ሻሺℎሻ ൌ E𝒬
೅
ሾ𝐴ሺ𝑇ሻ௛ሿ ൌ expሺ𝑀ℎ ൅

ଵ

ଶ
𝑉ଶℎଶሻ. (12) 

Taking ℎ ൌ 1 and ℎ ൌ 2 in (12), we obtain two conditions to solve for 𝑀 and 𝑉ଶ and the result is 
given as follows:  

 𝑀 ൌ 2lnE𝒬
೅
ሾ𝐴ሺ𝑇ሻሿ െ

ଵ

ଶ
lnE𝒬

೅
ሾ𝐴ሺ𝑇ሻଶሿ, (13) 

 𝑉ଶ ൌ lnE𝒬
೅
ሾ𝐴ሺ𝑇ሻଶሿ െ 2lnE𝒬

೅
ሾ𝐴ሺ𝑇ሻሿ, (14) 

where E𝒬
೅
ሾ𝐴ሺ𝑇ሻሿ and E𝒬

೅
ሾ𝐴ሺ𝑇ሻଶሿ are computed in Appendix A. 

With the aforementioned knowledge, (10) can be solved and the pricing formula of an AIRC is 
given in the following theorem. The proof is provided in Appendix A. 
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Theorem 1 
 𝑇ℎ𝑒  𝑃𝑟𝑖𝑐𝑖𝑛𝑔  𝐹𝑜𝑟𝑚𝑢𝑙𝑎  𝑜𝑓  𝑎𝑛  𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡  𝑅𝑎𝑡𝑒  𝐶𝑎𝑙𝑙  𝑂𝑝𝑡𝑖𝑜𝑛 

  The price of an average interest rate call option at its initial time 0 is given as follows:  

 𝐵ሺ0,𝑇ሻ ቀeெା
భ
మ
௏మNሺ

ெି୪୬௄ା௏మ

௏
ሻ െ 𝐾Nሺ

ெି୪୬௄

௏
ሻቁ, (15) 

where 𝑀 and 𝑉ଶ are defined in (13) and (14), and  

Eொ
೅
ሾ𝐴ሺ𝑇ሻሿ ൌ

1
𝑛
෍

௡

௜ୀଵ

𝐹ሺ0, 𝑡௜ሻexpቆන
௧೔

଴
𝛾ሺ𝑢, 𝑡௜ሻ ⋅ 𝜇଴ሺ𝑢; 𝑡௜ାଵ, 𝑡௡ାଵሻ𝑑𝑢ቇ, 

Eொ
೅
ሾ𝐴ሺ𝑇ሻଶሿ ൌ

1
𝑛ଶ
ቌ෍

௡

௜ୀଵ

Eொ
೅ሾ𝐹ሺ𝑡௜ , 𝑡௜ሻଶሿ ൅ 2෍

௡

௜ୀଶ

෍

௡

௝ୀ௜

Eொ
೅
ሾ𝐹ሺ𝑡௜ିଵ, 𝑡௜ିଵሻ𝐹ሺ𝑡௝ , 𝑡௝ሻሿቍ, 

Eொ
೅ሾ𝐹ሺ𝑡௜ , 𝑡௜ሻଶሿ ൌ 𝐹ሺ0, 𝑡௜ሻଶexpቆන

௧೔

଴
ሺ2𝛾ሺ𝑢, 𝑡௜ሻ ⋅ 𝜇଴ሺ𝑢; 𝑡௜ାଵ, 𝑡௡ାଵሻ൅∥ 𝛾ሺ𝑢, 𝑡௜ሻ ∥ଶሻ𝑑𝑢ቇ, 

Eொ
೅
ሾ𝐹ሺ𝑡௜ିଵ, 𝑡௜ିଵሻ𝐹ሺ𝑡௝ , 𝑡௝ሻሿ ൌ 𝐹ሺ0, 𝑡௜ିଵሻ𝐹ሺ0, 𝑡௝ሻexpቆන

௧೔షభ

଴
𝛾ሺ𝑢, 𝑡௜ିଵሻ ⋅ 𝜇଴ሺ𝑢; 𝑡௜ , 𝑡௡ାଵሻ𝑑𝑢 

൅න
௧ೕ

଴
𝛾ሺ𝑢, 𝑡௝ሻ ⋅ 𝜇଴ሺ𝑢; 𝑡௝ାଵ, 𝑡௡ାଵሻ𝑑𝑢 ൅ න

௧೔షభ

଴
𝛾ሺ𝑢, 𝑡௜ିଵሻ ⋅ 𝛾ሺ𝑢, 𝑡௝ሻ𝑑𝑢ቇ, 

𝐹ሺ𝑡௜ , 𝑡௜ሻ ൌ 𝐹ሺ0, 𝑡௜ሻexpቆන
௧೔

଴
ሺ𝛾ሺ𝑢, 𝑡௜ሻ ⋅ 𝜇଴ሺ𝑢; 𝑡௜ାଵ, 𝑡௡ାଵሻ െ

1
2
∥ 𝛾ሺ𝑢, 𝑡௜ሻ ∥ଶሻ𝑑𝑢 

൅න
௧೔

଴
𝛾ሺ𝑢, 𝑡௜ሻ ⋅ 𝑑𝑍ሺ𝑢ሻቇ, 

𝜇଴ሺ𝑡;𝐻ଵ,𝐻ଶሻ ൌ 𝜎ത଴ሺ𝑡,𝐻ଵሻ െ 𝜎ത଴ሺ𝑡,𝐻ଶሻ. 

As to the pricing of an AIRP, we may apply the put-call parity to solve (11) and the resulting pricing 
formula is given in the following theorem.  
 
Theorem 2  
𝑇ℎ𝑒  𝑃𝑟𝑖𝑐𝑖𝑛𝑔  𝐹𝑜𝑟𝑚𝑢𝑙𝑎  𝑜𝑓  𝑎𝑛  𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡  𝑅𝑎𝑡𝑒  𝑃𝑢𝑡  𝑂𝑝𝑡𝑖𝑜𝑛 

  The price of an average interest rate put option at its initial time 0 is given as follows:  

 𝐵ሺ0,𝑇ሻ ቀ𝐾Nሺെ
ெି୪୬௄

௏
ሻ െ eெା

భ
మ
௏మNሺെ

ெି୪୬௄ା௏మ

௏
ሻቁ. (16) 

The pivotal advantage of our pricing model over Longstaff (1995) and CV (1999) is its ease and 
flexibility in the parameter calibration. Our model can capture the effects of the actual term structures 
of interest rates and volatilities and the correlations between rates of different terms, which leads to the 
more accurate pricing formulas of AIROs. In addition, the pricing formulas (15) and (16) bear 
resemblance to the Black (1976) pricing model for options on futures in the environment of stochastic 
interest rates, which makes end-users more familiar to employ it. 

4. Numerical Study 

This section presents the calibration method and numerical examples of our pricing models in the 
following subsections. 

4.1 Calibration Method 

As mentioned above, the LMM has the advantage of ease and flexibility in the parameter calibration. 
This section provides a mechanism to calibrate simultaneously the actual LIBOR zero curve, cap 
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volatilities, and the correlations of LIBOR rates with different terms. We assume that there are 𝑛 forward 
LIBOR rates in an 𝑚-factor framework. The calibration procedure is presented in the following steps. 

First, we assume that the total volatility structure of 𝐹ሺ𝑡,⋅ሻ is piecewise-constant and depending 
solely on the time-to-maturity. Table 1 specifies instantaneous total volatilities applied to each period 
for each rate, which depend on the time-to-maturity of a forward. The volatilities can be calculated from 
market data and the detailed computational process is presented in Hull (2003). 

Table 1:  Instantaneous Volatilities of 𝑭ሺ𝒕,⋅ሻ 
 Instant. Total Vol. Time t ∈ ሺ𝑡଴, 𝑡ଵሿ ሺ𝑡ଵ, 𝑡ଶሿ ሺ𝑡ଶ, 𝑡ଷሿ ⋯ ሺ𝑡௡ିଵ, 𝑡௡ሿ 
Fwd Rate: 𝐹ሺ𝑡, 𝑡ଵሻ 𝑣ଵ Dead Dead ⋯ Dead 

𝐹ሺ𝑡, 𝑡ଶሻ 𝑣ଶ 𝑣ଵ Dead ⋯ Dead 

⋮ ⋯ ⋯ ⋯ ⋯ ⋯ 

𝐹ሺ𝑡, 𝑡௡ሻ 𝑣௡ 𝑣௡ିଵ 𝑣௡ିଶ ⋯ 𝑣ଵ 

Next, we use the historical price data of the forward LIBOR rates to derive a full-rank 𝑛 ൈ 𝑛 
instantaneous-correlation matrix Σ. Thus, Σ is a positive-definite and symmetric matrix and can be 
written as  

 Σ ൌ ΘΛΘ′, 

where Θ is a real orthogonal matrix and Λ is a diagonal matrix. Let 𝐻 ≡ ΘΛଵ/ଶ and thus, 𝐻𝐻′ ൌ Σ, so 
that we can find a suitable 𝑛 ൈ 𝑚 matrix 𝐺  with 𝑚-rank (𝑚 ൑ 𝑛), such that Σீ ൌ 𝐺𝐺′ is a 𝑚-rank 
correlation matrix and can be used to mimic the market correlation matrix Σ. 

The advantage of this procedure is that we may replace the 𝑛-dimensional original Brownian 
motion 𝑑𝑍ሺ𝑡ሻ with 𝐺𝑑𝑊ሺ𝑡ሻ where 𝑑𝑊ሺ𝑡ሻ is an 𝑚-dimensional Brownian motion. In other words, we 
change the market correlation structure  

 𝑑𝑍ሺ𝑡ሻ𝑑𝑍ሺ𝑡ሻ′ ൌ Σ𝑑𝑡 

to a modeled correlation structure  

 𝐺𝑑𝑊ሺ𝑡ሻሺ𝐺𝑑𝑊ሺ𝑡ሻሻ′ ൌ 𝐺𝑑𝑊ሺ𝑡ሻ𝑑𝑊ሺ𝑡ሻ′𝐺′ ൌ 𝐺𝐺′𝑑𝑡 ൌ Σீ𝑑𝑡. 

The remaining problem is how to choose a suitable matrix 𝐺 . Rebonato (1999) proposed the 
following form for 𝑖-th row of 𝐺:  

 𝑔௜,௞ ൌ ቊ
 𝑐𝑜𝑠 𝜃௜,௞   Π௝ୀଵ

௞ିଵ   𝑠𝑖𝑛 𝜃௜,௝  𝑖𝑓   𝑘 ൌ 1,2, . . . ,𝑚 െ 1,

Π௝ୀଵ
௞ିଵ   𝑠𝑖𝑛 𝜃௜,௝  𝑖𝑓   𝑘 ൌ 𝑚,

 

for 𝑖 ൌ 1,2, . . . ,𝑛. By finding a 𝜃෠ that solves the following optimization problem  

  𝑚𝑖𝑛 
ఏ

∑௡௜,௝ୀଵ |Σ௜,௝
஻ െ Σ௜,௝|ଶ, 

and substituting 𝜃෠  into 𝐺 , we obtain a suitable matrix 𝐺෠  such that Σீሺൌ 𝐺෠𝐺෠′ሻ  is an approximate 
correlation matrix for Σ. 

Thirdly, 𝐺෠ can be used to distribute the instantaneous total volatility to each Brownian motion 
without changing the amount of the instantaneous total volatility. 

4.2 Numerical Examination 

In this subsection, we provide eight numerical examinations of a 5-year AIROs and a 10-year AIROs 
based on the market data. The actual market data is from the U.S. Department of the treasury.5 All the 

                                                             
5  The daily treasury yield curve rate shows on the https://www.treasury.gov/resource-center/data-chart-
center/interest-rates/Pages/TextView.aspx?data=yieldAll. 
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data are shown in Table 6 in Appendix C. To construct the initial forward LIBOR rates, we first use the 
linear interpolation method to find the yield rate of each tenor in 6 months, 1 year, 1.5 years, ..., 9.5 
years, 10 years. Then, we transform these yield rates into the initial forward LIBOR rates by  

 𝐹ሺ𝑡,𝑇,𝑇 ൅ 𝛿ሻ ൌ
ଵ

ఋ
ቀ ஻ሺ௧,்ሻ

஻ሺ௧,்ାఋሻ
െ 1ቁ, 

where 𝐹ሺ𝑡,𝑇,𝑇 ൅ 𝛿ሻ is the forward LIBOR rate contracted at time 𝑡 and applied to the period [𝑇, 𝑇 ൅ 𝛿] 
with 0 ൑ 𝑡 ൑ 𝑇 ൑ 𝑇 ൅ 𝛿 ൑ 𝒯 and  

 𝐵ሺ𝑡,𝑇ሻ ൌ 𝑒𝑥𝑝ሺെ𝑌ሺ𝑡,𝑇ሻ𝑇ሻ, 

where 𝑌ሺ𝑡,𝑇ሻ is the yield rate observed at time 𝑡 and apply at time 𝑇. Equip the calibration methods we 
provide in the previous subsection with the market data, all the parameters in the LMM model can be 
calibrated as the practical implementation. 

With the calibrated parameters, this article employs the Monte Carlo simulation as a benchmark to 
examine the accuracy of the pricing formula. The simulation is based on 10,000 sample paths. The 5-
year and 10-year AIROs with notional principal 1 are priced at different quarterly dates. The strike rate 
with 𝐾 ൌ 0,50, and 100 basis points are roughly in-the-money, at-the-money, and out-of-the-money, 
respectively. 

All results are listed in Table 2, Table 3, Table 4, and Table 5. Levy means the price results of our 
pricing formula with the Levy approach. MC means the price results based on the Monte Carlo 
simulation method. Furthermore, we also provide the standard error (s.e.) of the Monte Carlo simulation 
method. All the results in both tables show that whatever in the different moneyness setting, the 
approximate pricing formula is sufficiently accurate. 

Table 2: The 5-yr AIRO  
 K   LEVY   MC   s.e. 

2019/03/01        
  

2.2708ൈ 10ିଶ  
 

2.2699ൈ 10ିଶ  
 

5.0668ൈ 10ି଺  
  

1.8309ൈ 10ିଶ  
 

1.8307ൈ 10ିଶ  
 

5.1311ൈ 10ି଺  
  

1.3909ൈ 10ିଶ  
 

1.3902ൈ 10ିଶ  
 

5.3089ൈ 10ି଺  
2019/06/03        

  
1.6286ൈ 10ିଶ  

 
1.6288ൈ 10ିଶ  

 
3.9054ൈ 10ି଺  

  
1.1723ൈ 10ିଶ  

 
3.1726ൈ 10ିଶ  

 
3.9728ൈ 10ି଺  

  
7.1601ൈ 10ିଷ  

 
7.1661ൈ 10ିଷ  

 
4.0446ൈ 10ି଺  

2019/09/03        
  

1.2107ൈ 10ିଶ  
 

1.2108ൈ 10ିଶ  
 

5.1212ൈ 10ି଺  
  

7.4335ൈ 10ିଷ  
 

7.4320ൈ 10ିଷ  
 

5.2713ൈ 10ି଺  
  

2.7599ൈ 10ିଷ  
 

2.7603ൈ 10ିଷ  
 

5.3116ൈ 10ି଺  
2019/12/02        

  
1.5286ൈ 10ିଶ  

 
1.5291ൈ 10ିଶ  

 
6.6602ൈ 10ି଺  

  
1.0682ൈ 10ିଶ  

 
1.0682ൈ 10ିଶ  

 
6.7196ൈ 10ି଺  
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 K   LEVY   MC   s.e. 
  

6.0781ൈ 10ିଷ  
 

6.0667ൈ 10ିଷ  
 

6.9344ൈ 10ି଺  
[*]  The prices of the 5-year AIROs are presented in this table. They are
priced via the Levy approach (LEVY) and Monte Carlo simulation (MC) at
different quarterly dates over the past 1 year. SE stands for the standard
error of MC. The market data used are listed in Table 4 in Appendix C. The
notional principal amount is assumed to be $1. The simulation is based on
10000 paths. The strike rates with 𝐾 ൌ 0,50 , and 100  basis points are 
roughly in-the-money, at-the-money, and out-of-the-money, respectively.   

Table 3: The 5-yr AIRO 
  K   LEVY   MC   s.e. 

2020/03/02        
  

8.3646ൈ 10ିଷ  
 

8.3640ൈ 10ିଷ  
 

4.4922ൈ 10ି଺  
  

3.5798ൈ 10ିଷ  
 

3.5761ൈ 10ିଷ  
 

4.5839ൈ 10ି଺  
  

1.2861ൈ 10ି଺  
 

1.3192ൈ 10ି଺  
 

1.9962ൈ 10ି଻  
2020/06/01        

  
3.1956ൈ 10ିଷ  

 
3.1887ൈ 10ିଷ  

 
1.1787ൈ 10ିହ  

  
8.5107ൈ 10ିହ  

 
8.2404ൈ 10ିହ  

 
4.0409ൈ 10ି଺  

  
6.2689ൈ 10ି଻  

 
6.1962ൈ 10ି଻  

 
4.9115ൈ 10ି଻  

2020/09/01        
  

2.7106ൈ 10ିଷ  
 

2.7089ൈ 10ିଷ  
 

7.0589ൈ 10ି଺  
  

3.8065ൈ 10ି଺  
 

5.1818ൈ 10ି଺  
 

6.6494ൈ 10ି଻  
  

1.2319ൈ 10ିଵ଴  
 

1.3570ൈ 10ିଵ଴  
 

5.7239ൈ 10ିଵ଴  
2020/12/01        

  
4.4662ൈ 10ିଷ  

 
4.4503ൈ 10ିଷ  

 
8.7220ൈ 10ି଺  

  
1.9132ൈ 10ିସ  

 
1.9364ൈ 10ିସ  

 
4.4547ൈ 10ି଺  

  
9.8309ൈ 10ିଽ  

 
9.3220ൈ 10ିଽ  

 
6.5884ൈ 10ିଵ଴  

  [*]  The prices of the 5-year AIROs are presented in this table. They are
priced via the Levy approach (LEVY) and Monte Carlo simulation (MC) at
different quarterly dates over the past 1 year. SE stands for the standard
error of MC. The market data used are listed in Table 4 in Appendix C. The
notional principal amount is assumed to be $1. The simulation is based on
10000 paths. The strike rates with 𝐾 ൌ 0,50 , and 100  basis points are 
roughly in-the-money, at-the-money, and out-of-the-money, respectively.   

Table 4: The 10-yr AIRO  
  K   LEVY   MC   s.e. 

2019/03/01        
  

2.1183ൈ 10ିଶ  
 

2.1182ൈ 10ିଶ  
 

5.5248ൈ 10ି଺  
  

1.7389ൈ 10ିଶ  
 

1.7397ൈ 10ିଶ  
 

5.8165ൈ 10ି଺  
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  K   LEVY   MC   s.e. 
  

1.3595ൈ 10ିଶ  
 

1.3597ൈ 10ିଶ  
 

6.0983ൈ 10ି଺  
2019/06/03        

  
1.6813ൈ 10ିଶ  

 
1.6806ൈ 10ିଶ  

 
4.8942ൈ 10ି଺  

  
1.2747ൈ 10ିଶ  

 
1.2755ൈ 10ିଶ  

 
5.1275ൈ 10ି଺  

  
8.6828ൈ 10ିଷ  

 
8.6910ൈ 10ିଷ  

 
5.4564ൈ 10ି଺  

2019/09/03        
  

1.2547ൈ 10ିଶ  
 

1.2554ൈ 10ିଶ  
 

6.4411ൈ 10ି଺  
  

8.2309ൈ 10ିଷ  
 

8.2331ൈ 10ିଷ  
 

6.7208ൈ 10ି଺  
  

3.9144ൈ 10ିଷ  
 

3.9300ൈ 10ିଷ  
 

7.1722ൈ 10ି଺  
2019/12/02        

  
1.5397ൈ 10ିଶ  

 
1.5405ൈ 10ିଶ  

 
8.4191ൈ 10ି଺  

  
1.1234ൈ 10ିଶ  

 
1.1221ൈ 10ିଶ  

 
8.8889ൈ 10ି଺  

  
7.0702ൈ 10ିଷ  

 
7.0757ൈ 10ିଷ  

 
9.4194ൈ 10ି଺  

[*]  The prices of the 5-year AIROs are presented in this table. They are
priced via the Levy approach (LEVY) and Monte Carlo simulation (MC) at
different quarterly dates over the past 1 year. SE stands for the standard
error of MC. The market data used are listed in Table 4 in Appendix C. The
notional principal amount is assumed to be $1. The simulation is based on
10000 paths. The strike rates with 𝐾 ൌ 0,50 , and 100  basis points are 
roughly in-the-money, at-the-money, and out-of-the-money, respectively. 

Table 5: The 10-yr AIRO 
  K   LEVY   MC   s.e. 

2020/03/02        
  

9.9508ൈ 10ିସ  
 

9.9580ൈ 10ିସ  
 

6.8240ൈ 10ି଺  
  

5.4717ൈ 10ିସ  
 

5.4852ൈ 10ିସ  
 

7.1030ൈ 10ି଺  
  

1.0202ൈ 10ିସ  
 

1.0139ൈ 10ିସ  
 

7.0215ൈ 10ି଺  
2020/06/01        

  
6.4046ൈ 10ିଷ  

 
6.4005ൈ 10ିଷ  

 
2.3186ൈ 10ିହ  

  
1.9642ൈ 10ିଷ  

 
1.9250ൈ 10ିଷ  

 
2.1924ൈ 10ିହ  

  
2.4727ൈ 10ିସ  

 
2.4572ൈ 10ିସ  

 
9.6510ൈ 10ି଺  

2020/09/01        
  

6.6260ൈ 10ିଷ  
 

6.6214ൈ 10ିଷ  
 

1.6874ൈ 10ିହ  
  

2.0238ൈ 10ିଷ  
 

2.0219ൈ 10ିଷ  
 

1.6751ൈ 10ିହ  
  

1.0243ൈ 10ିସ  
 

1.0538ൈ 10ିସ  
 

4.9152ൈ 10ି଺  
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  K   LEVY   MC   s.e. 
2020/12/01        

  
8.7965ൈ 10ିଷ  

 
8.8048ൈ 10ିଷ  

 
1.7172ൈ 10ିହ  

  
4.2364ൈ 10ିଷ  

 
4.1889ൈ 10ିଷ  

 
1.7957ൈ 10ିହ  

  
6.0842ൈ 10ିସ  

 
6.0693ൈ 10ିସ  

 
1.1082ൈ 10ିହ  

[*]  The prices of the 5-year AIROs are presented in this table. They are
priced via the Levy approach (LEVY) and Monte Carlo simulation (MC) at
different quarterly dates over the past 1 year. SE stands for the standard
error of MC. The market data used are listed in Table 4 in Appendix C. The
notional principal amount is assumed to be $1. The simulation is based on
10000 paths. The strike rates with 𝐾 ൌ 0,50 , and 100  basis points are 
roughly in-the-money, at-the-money, and out-of-the-money, respectively.   

  

5. Conclusion 

We have contributed to the literature by providing the pricing formulas for the options on the average 
interest rate under the LMM. As compared with the earlier interest rate models (Vasicek and HW), the 
LMM is consistent with the observable yield curve and easier for calibrating the model parameters from 
market data. In addition, since the underlying interest rates in the LMM are directly forward LIBOR 
rates, it avoids a complex transformation from the unobservable short rates to the associated LIBOR 
rates. Thus, pricing AIROs under the LMM is more feasible and tractable for market practitioners. 

By comparing with the values obtained via the Monte Carlo, the results of our pricing 
formulas have been shown to be sufficiently accurate and robust. Hence, the model developed 
here is suitable for practical implementation. 
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Appendix A: Hedging by an AIRC is Cheaper than by a Corresponding Caps  

 Appendix A will show that hedging periodic interest rate risks with an AIRC is cheaper than with 
the corresponding interest rate cap. Consider the time flow as follows: 0 ൏ 𝑡଴ ൏ 𝑡ଵ ൏. . . .൏ 𝑡௡ ൏ 𝑡௡ାଵ ൌ
𝑇, with 𝛿 ൌ 𝑡௜ െ 𝑡௜ିଵ for 𝑖 ൌ 1,2, . . . ,𝑛 ൅ 1. Assume that, at the end of each time period ሾ𝑡௜ , 𝑡௜ାଵሿ for 
𝑖 ൌ 1,2, . . . ,𝑛, we need to pay an interest linked to 𝐿ሺ𝑡௜ , 𝑡௜ሻ based on a principal 𝑎௜. We want to hedge 
the interest rate risk by controlling the average interest rate lower than 𝐾 . There are two hedging 
approaches. 

Firstly, we hedge the separate interest rate risk at time 𝑡௜ , for 𝑖 ൌ 1,2, . . . ,𝑛 , by using the 
corresponding caplet with the nominal amount 𝑎௜, which is defined as follows:  

 Cap ൌ ∑௡௜ୀଵ 𝑎௜Maxሺ𝐿ሺ𝑡௜ , 𝑡௜ሻ െ 𝐾, 0ሻ, 

which can make sure that each interest rate lower than 𝐾, and thus leads the average interest rate lower 
than 𝐾. 

Secondly, we hedge the average interest rate risk by employing an AIRC with the nominal amount 
∑௡௝ୀଵ 𝑎௝, which is defined as follows:  

 AIRC ൌ ቊ
൫∑௡௝ୀଵ 𝑎௝൯ሺ𝐴ሺ𝑇ሻ െ 𝐾ሻ 𝐴ሺ𝑇ሻ ൒ 𝐾,
0 Otherwise,

 

where 𝐾 is an exercise rate and  

 𝐴ሺ𝑇ሻ ൌ ∑௡௜ୀଵ
௔೔

∑೙ೕసభ ௔ೕ
𝐿ሺ𝑡௜ , 𝑡௜ሻ. 

By applying Jensen’s inequality, we can show that the AIRC price is cheaper than the price of 
the corresponding cap, and the proof is given as follows: 
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 ൌ Cap, 

which shows that hedging interest rate risk with an AIRC is cheaper than with the corresponding cap. 
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Appendix B: The Proof of Theorem 1 

Appendix A computes (10) based on the assumption mentioned in Section 3 that  

  𝑙𝑛 𝐴ሺ𝑇ሻ ∼ 𝑁ሺ𝑀,𝑉ଶሻ, 

where 𝑀 and 𝑉ଶ are defined in (13) and (14). Before the derivation, we present a lemma without proof 
which is useful in the derivation of (10).6  

Lemma 1 If 𝑌 ∼ 𝑁ሺ0, 𝜈ଶሻ, then the expectation of 𝐸ሾሺ𝑋𝑒௒ െ 𝐾ሻାሿ is given as follows:  

 𝑋e
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ሻାఔమ

ఔ
ቇ െ 𝐾Nቆ

୪୬ሺ
೉
಼
ሻ

ఔ
ቇ, 

where 𝑋 and 𝐾 are constants.  
 

By Lemma 1, (10) can be derived as follows:  

 𝐵ሺ0,𝑇ሻ ቀeெା
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The remaining tasks are computing Eொ
೅
ሾ𝐴ሺ𝑇ሻሿ and Eொ

೅
ሾ𝐴ሺ𝑇ሻଶሿ. 

According to Proposition 2, under the forward measure 𝑄் (= 𝑄௧೙శభ), the dynamics of 𝐹ሺ𝑡, 𝑡௜ሻ, 
𝑖 ൌ 1,2, . . . ,𝑛, is given as follows:  
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ிሺ௧,௧೔ሻ
ൌ െ𝛾ሺ𝑡, 𝑡௜ሻ ⋅ ሺ𝜎ത଴ሺ𝑡, 𝑡௡ାଵሻ െ 𝜎ത଴ሺ𝑡, 𝑡௜ାଵሻሻ𝑑𝑡 ൅ 𝛾ሺ𝑡, 𝑡௜ሻ ⋅ 𝑑𝑍ሺ𝑡ሻ, 

 ൌ 𝛾ሺ𝑡, 𝑡௜ሻ ⋅ 𝜇଴ሺ𝑡; 𝑡௜ାଵ, 𝑡௡ାଵሻ𝑑𝑡 ൅ 𝛾ሺ𝑡, 𝑡௜ሻ ⋅ 𝑑𝑍ሺ𝑡ሻ, 

 where  

 𝜇଴ሺ𝑡; 𝑡௜ାଵ, 𝑡௡ାଵሻ ൌ െሺ𝜎ത଴ሺ𝑡, 𝑡௡ାଵሻ െ 𝜎ത଴ሺ𝑡, 𝑡௜ାଵሻሻ. 

 We first derive Eொ
೅
ሾ𝐴ሺ𝑇ሻሿ and then Eொ
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ሾ𝐴ሺ𝑇ሻଶሿ. 
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 where  

 Eொ
೅ሾ𝐹ሺ𝑡௜ , 𝑡௜ሻଶሿ ൌ 𝐹ሺ0, 𝑡௜ሻଶexp ቀ׬
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଴ ሺ2𝛾ሺ𝑢, 𝑡௜ሻ ⋅ 𝜇଴ሺ𝑢; 𝑡௜ାଵ, 𝑡௡ାଵሻ൅∥ 𝛾ሺ𝑢, 𝑡௜ሻ ∥ଶሻ𝑑𝑢ቁ 

 and  

 Eொ
೅
ሾ𝐹ሺ𝑡௜ିଵ, 𝑡௜ିଵሻ𝐹ሺ𝑡௝ , 𝑡௝ሻሿ ൌ 

 𝐹ሺ0, 𝑡௜ିଵሻ𝐹ሺ0, 𝑡௝ሻexp ቀ׬
௧೔షభ
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଴ 𝛾ሺ𝑢, 𝑡௜ିଵሻ ⋅ 𝛾ሺ𝑢, 𝑡௝ሻ𝑑𝑢ቁ. 

  

                                                             
6 The proof of Lemma 1 is available upon request from the authors. 
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Appendix C: The Market Data 

 Table 6 are the daily treasury yield curve rate disclosed by the U.S. Department of the treasury 
which are used for the numerical examinations in Section 4. 

    
Table 6: The Daily Treasury Yield Curve Rate 

 Pricing Date 6-Month 1-Year 2-Year 3-Year 5-Year 7-Year 10-Year 
2019-03-01 2.52 2.55 2.55 2.54 2.56 2.67 2.76 
2019-06-03 2.31 2.11 1.82 1.79 1.83 1.95 2.07 
2019-09-03 1.88 1.72 1.47 1.38 1.35 1.42 1.47 
2019-12-02 1.62 1.60 1.61 1.63 1.65 1.77 1.83 
2020-03-02 0.95 0.89 0.84 0.85 0.88 1.01 1.10 
2020-06-01 0.18 0.17 0.14 0.20 0.31 0.50 0.66 
2020-09-01 0.13 0.12 0.13 0.14 0.26 0.46 0.68 
2020-12-01 0.10 0.12 0.17 0.22 0.42 0.68 0.92 

  [*]  The daily treasury yield curve rate disclosed by the U.S. Department of the treasury. The treasury 

yield curve rates are expressed in percentage.   


