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ABSTRACT
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forward LIBOR rates, modeled in the LMM, exhibit positive rates and are market-observable,
which avoids pricing errors arising from negative rates and is easier for calibration. The
underlying average rate is calculated by summing LIBOR rates rather than integrating
instantaneous short rates, which makes our resulting formulas consistent with market
practice. The resulting pricing formulas of average interest rate options are shown to be
accurate as compared with the Monte Carlo simulation. The calibration procedure and its

practical implementation are also examined.
02021 IRABF All rights reserved.

Keywords: LIBOR Market Model; Martingale Pricing Method; Average Interest Rate
Options
JEL classification: G12

* Corresponding author: Pao-Hsien Huang, Assistant Professor at Department of Finance, Southern Taiwan University
of Science and Technology; Add: No. 1, Nan-Tai Street, Yungkang Dist., Tainan City 710, Taiwan (R.0.C.); Tel: 886-6-253-
3131, ext. 5336; Fax: 886-6-301-0006; E-mail: samhuang@stust.edu.tw.

17



Pricing Average Interest Rate Options in the LIBOR Market Model

1. Introduction

Hedging against interest rate risks has become one of the most important tasks for a financial manager.
To manage these risks, many interest rate derivatives, such as forward rate agreements, caps, floors,
swaps, and swaptions, have been developed and traded actively. These days, besides achieving hedging
needs, hedgers further want to reduce their hedging costs, which gives a big challenge and a new
direction to financial engineers. To accomplish this purpose, average interest rate options (AIROs) have
recently been developed to lower the cost of hedging interest rate risks, and thus become increasingly
popular.

Interest rate caps are one of the most actively traded interest rate derivatives. It is well known that
a cap is a portfolio of interest rate call options which pay the holder some pre-specified market interest
rates minus a cap rate (if positive) or zero (if non-positive), on a pre-agreed notional principal. Therefore,
an interest rate cap can be employed to hedge separately interest rate risks of the future cash flows by
putting a ceiling on their borrowing interest costs at a cap rate. However, some investors may desire to
hedge their average interest costs of overall cash flows rather than individual ones. To achieving this
purpose, AIROs are developed and provide for financial practitioners a cheaper and more efficient
hedging tool.

AIROs are interest rate options, whose underlying rates are calculated by an arithmetic average of
some pre-specified interest rates (e.g. LIBOR rates) over a given time interval. Unlike interest rate caps,
AIROs can ceil the average (rather than individual) interest costs at a cap rate. Moreover, if an investor
wants to hedge average interest costs, hedging with an AIRO is cheaper than with the corresponding
caps (or floors)." Since most financial institutions take huge and complicated positions involved with
interest rate risks by issuing many kinds of interest rate-related products, such as interest rate-linked
structure notes, interest rate swaps, etc., AIROs can be employed to hedge the overall average interest
rate risks in a more efficient way. In addition, AIROs are less liable to unanticipated events or the market
manipulation by the options’ counterparties since their final payoffs depend on the average interest rate
during their life, which makes AIROs become a more trustworthy hedging tool. Due to these advantages,
AIROs have been widely-traded in the over-the-counter market.

Some earlier research has been conducted on the pricing of AIROs. Within the Vasicek (1977)
interest rate model, Longstaff (1995) derives analytic pricing formulas for AIROs. However, the
underlying average rate is calculated continuously on the basis of abstract short rates rather than LIBOR
rates, which is inconsistent with market practice.” Based on the Hull and White (1990, HW) interest
rate model, Cheuk and Vorst (1999, CV) modify the setting of the underlying average rate in Longstaff
(1995) by computing discretely the arithmetic average of LIBOR rates. However, the LIBOR rates in
CV (1999) are transformed from the market-unobservable short rates, and the transformation process
would make the resulting pricing formula more complicated. Moreover, the short rates specified in both
Vasicek and HW are Gaussian processes, so the negative rates may occur and lead to some pricing
error.’ In addition, the HW model cannot capture the correlations between rates of different terms as
realistically as the LIBOR market model (hereafter, LMM), and this may affect the accuracy of pricing
AIRO:s.

The main purpose of this paper is to price AIROs within the LIBOR market model (LMM)
framework. The LMM is developed by Brace, Gatarek, and Musiela (1997, BGM), Musiela and

1 This statement is proved in Appendix A.
2 The underlying average rate in Longstaff (1995) is A(T) = (fOT rudu) /T, where 1, is the instantaneous short rate.

However, market practice is that A(T) = Y,i-; L(t;, t;)/n, where L(t;, t;) stands for LIBOR rate observed at time ¢;.
3 Rogers (1996) indicated that the Gaussian term structure model has an important theoretical limitation: the rate can
attain negative values with positive probability which may cause some pricing error in many cases.
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Rutkowski (1997), and Miltersen, Sandermann, and Sondermann (1997). The rate specified in the LMM
is a market-observable LIBOR rate which is commonly used in the financial industry. Therefore, pricing
AIROs based on the LMM can avoid the complicated transformation from short rates to LIBOR rates,
such as Longstaff (1995) and CV (1999), making the resulting pricing formula full of financial-
economic intuitions. The resulting pricing formula of AIROS bears resemblance to the Black (1976)
pricing model for options on futures in the environment of stochastic interest rates, and thus provides
end-users a familiarity to use it. The LIBOR rate modeled in LMM is lognormally distributed,
preventing the negative rate problem. The most important advantage of the LMM over the short rate
models is its ease and flexibility in the parameter calibration. The LMM can simultaneously calibrate
the market-quoted cap volatilities and the correlation matrix of the underlying forward LIBOR rates.
Equipped with these advantages, pricing AIROs under the LMM is more suitable for practical
implementation.

The paper is organized as follows. Section 2 specifies the approximate lognormal LMM model and
introduces different approximate lognormal dynamics under the mechanism of changing the numéraire.
Section 3 outlines the contracts of a general AIRO and presents an approximation method to derive the
closed-form solutions of the AIRO. Section 4 provides the calibration procedure and examines the
accuracy of the approximate formulas based on the Monte Carlo simulation. The conclusion is made in
the last section.

2. The Model

We assume that trading takes place continuously in time over an interval [0,T], 0 < T < oo. The
uncertainty is described by the filtered spot martingale probability space (Q, F,Q, {Tt}te[o,f]) where the
filtration is generated by the independent standard Brownian motions Z(t) = (Z;(t), Z,(¢t),..., Z,(t)).
Note that Q represents the spot martingale probability measure. We list the notations as follows.

B(t, T)= the time-t price of a zero-coupon bond (ZCB) paying one dollar at time T.
F(t, T)= the forward LIBOR rate contracted at time t and applied to the period [T, T +
6lwith0<t<T<T+46<7.
QT= the martingale measure with respective to the numéraire B(-, T).

The relationship between F(t, T) and B(t, T) can be expressed as follows:
F(t,T) =5 (B(tT) — B(t T + 8))/B(t,T + ). (1)
Based on the result of Heath, Jarrow, and Morton (1992), BGM (1997) models interest rates in

terms of the forward LIBOR rates. We specify briefly their results as follows.

Assumption 1
The LIBOR Rate Dynamics under the Measure Q
The dynamics of the LIBOR rate F (t, T) under the spot martingale measure Q is given as follows:
dF(t, T) =F(t,T)y(t,T) -o(t, T+ 8&)dt+ F(t, T)y(t,T) -dZ(t), 2)
where 0 <t <T <T,y(t,T):R% — R™is a bounded, piecewise continuous, deterministic vector

function, and o (t,-) is defined as follows:
671(T—t)] _8F(tT~j8) . _
. Y1 Tarcr_s ! &T =9 te[0,T-4] 3
ot.T) = &T—6>0, (3)

0 otherwise,

where |§71(T — t)] denotes the greatest integer that is less than § (T — t).
According to the definition of the bond volatility process (3), {0 (¢, T + 8)}te[o,r+s] IS stochastic

19



Pricing Average Interest Rate Options in the LIBOR Market Model

rather than deterministic. Thus, the stochastic differential equation (2) can not be solved, and thus the
distribution of F(T,T) is unknown. However, given a fixed initial time, assumed time 0, we can
approximate o (t, T) by a°(t, T) which is defined by

[6~(T—t)] _6F(0,T—j6) . _
Zj:l 1+6F(0,T—j5)y(t'T j6), te[0,T—4] .
& T—6>0, 4)
0 otherwise ,

a%(t,T) =

where 0 < t < T. It means that the calendar time of the process {F(t,T)}¢e[o,r] in (4) is frozen at its
initial time 0 and thus the process {G°(t, T)}tefo,r] becomes deterministic. By substituting ao(t, T +6)
for a(t, T + &) in the drift term of (2), the drift and the volatility terms in (2) will be deterministic, so
we can solve (2) and find the approximate distribution of F (T, T) to be lognormally distributed. This
argument is the Wiener chaos order 0 approximation which is first used by BGM (1997) for pricing
interest rate swaptions. It was developed further in Brace, Dun, and Barton (1998) and formalized by
Brace and Womersley (2000). The accuracy of this approximation for the pricing formula of AIROs (to
be derived later) will be shown to be sufficiently accurate.

Proposition 1
The Approximate LIBOR Rate Dynamics under the Measure Q

The approximate dynamics of the LIBOR rate F(t,T) under the spot martingale measure Q is
given as follows:

dFF((:'TT)) =yt T) 6% T+ 8)dt +y(t,T) - dZ(t), (5)

where 0 <t <T<T7T.

The following proposition specifies the general rule under which the LIBOR rate dynamics change
when the underlying probability measure is altered. This rule is useful for deriving the pricing formulas
of the AIROs.

Proposition 2
The Approximate LIBOR Rate Dynamics under Different Measures
The dynamics of the LIBOR rate F(t, T) under an arbitrary forward martingale measure QU is
given as follows:
dF(tT) —0 —0
Fon y(, T) - (6"t T+ —a’(t,U)dt+y(t,T)-dZ(t), (6)

where 0 <t <min(U,T) <7/

Having briefly introduced the BGM model, we next employ it to derive the pricing formulas of the
AIROs in the following section.

3. Pricing Average Interest Rate Options

The payoff structure of an AIRO is defined as follows. Suppose that an AIRO is issued at time 0 (= ¢t;)
and expires attime T (= t,,;.1). The underlying average rate is observed on n different occasions during
the life of the option. The observation times are denoted by {tq,t,,...,t,} where t; < t;,, fori =
0,1,...,n. For simplicity, we assume § = t;,; — t; fori = 0,1,2,...,n. Let K denote the exercise rate.
Then, the final payoff of an average interest rate call (AIRC) and an average interest rate put (AIRP) at

4+We employ Z(t) to denote an independent m-dimensional standard Brownian motion under an arbitrary measure
without causing any confusion.

20



IRABF 2021 Volume 13 Number 1

time T is defined, respectively, as follows:

AIRC(T) = Max(A(T) — K, 0), (7)
and
AIRP(T) = Max(K — A(T),0), (8)
where
A(T) = 31 F(ti, ). )

The final payoffs in (7) and (8) depend on the discrete average of the market-observable LIBOR
rates rather than the continuous average of the abstract short rates given in Longstaft (1995). Therefore,
our payoff setting is consistent with practical implementation. Moreover, the LIBOR rate in (7) and (8)
are specified directly in the LMM rather than transformed from the abstract short rate, which avoids a
complicated transformation calculation.

Based on the martingale pricing method, the issuing price of the AIRC and AIRP can be obtained,
respectively, by solving the following expectation:

B(0,T) E <" [Max(A(T) — K, 0)], (10)
and
B(0,T) E ?" [Max(K — A(T),0)]. (11)

As the problem in pricing ordinary Asian options that the arithmetic average of lognormally-
distributed variables is not lognormally distributed, the distribution of A(T) is unknown. Hence, (10)
and (11) cannot be solved analytically as closed-form solutions. Levy (1992) employed the Wilkinson
approximation method to price analytically Asian currency options. However, his approximation only
matches the first two moments and thus leading to some pricing errors in some special financial
environment. To increase the pricing accuracy, we adopt the Jarrow and Rudd (1982) approximation
method, which uses the first four moments, to deriving the approximate pricing formulas of AIROs,
whose accuracy is examined with the Monte Carlo simulation in the next section.

Based on the Wilkinson approximation, we replace the unknown distribution of the arithmetic
average of lognormal random variables with a lognormal distribution that has the correct first two
moments. In this way, A(T) has an approximately lognormal distribution, and (10) and (11) can be
solved.

Hence, we assume that InA(T) has a normal distribution with mean M and variance V2. The
moment generating function for InA(T) is given by

Minacry (h) = E9"[A(T)"] = exp(Mh + SV 2h2). (12)

Taking h = 1 and h = 2 in (12), we obtain two conditions to solve for M and V? and the result is
given as follows:

M = 2InE9" [A(T)] — 5 InE2" [A(T)?], (13)
V2 = InEQ" [A(T)?] — 2InEQ" [A(T)], (14)

where E<" [A(T)] and EQT[A (T)?] are computed in Appendix A.
With the aforementioned knowledge, (10) can be solved and the pricing formula of an AIRC is
given in the following theorem. The proof is provided in Appendix A.
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Theorem 1
The Pricing Formula of an Average Interest Rate Call Option
The price of an average interest rate call option at its initial time O is given as follows:

1
B(0,T) (eM+EV2N(M —InK+v? M~ an)),

) — KN( (15)

where M and V2 are defined in (13) and (14), and

lam] = Z F(0,t;)exp (fo Y t) - o (u; ti+1:tn+1)du>'

ATy’ z B9 [F (6, )°] ZZZ [Pt ti-F (6,1 )

=2 j=i

QCy, ) - oW iy, tnp ) Hl ¥ (W, t;) IIZ)du>,

ti
EQ[F(t; t;)2] = F(0, t;)%exp (f
0

ti—1

EQ"[F(tiy, ti—)F (. t)] = F(0,t;-1)F (0, t;)exp (f YU, ticq) - Ho(W; ty, tpyq)du
0

ti—1

tj
+ f Y t)) - o (s a1, trsr )it + f y(u.ti_l)-y(u.t,-)du),
0 0

2

F(t,t) = F(O, ti)GXP( r(w ti) - oW tigr, trer) =5 || y(u, t) 17)du

+[ e dZ(u)>,
0
to(t; Hy, Hy) = a°(t, Hy) — G°(t, Hy).

As to the pricing of an AIRP, we may apply the put-call parity to solve (11) and the resulting pricing
formula is given in the following theorem.

Theorem 2
The Pricing Formula of an Average Interest Rate Put Option
The price of an average interest rate put option at its initial time O is given as follows:

1
M- an) eM+5V2N(—

M—an+VZ)). (16)

B(0,T) (KN(- .

The pivotal advantage of our pricing model over Longstaff (1995) and CV (1999) is its ease and
flexibility in the parameter calibration. Our model can capture the effects of the actual term structures
of interest rates and volatilities and the correlations between rates of different terms, which leads to the
more accurate pricing formulas of AIROs. In addition, the pricing formulas (15) and (16) bear
resemblance to the Black (1976) pricing model for options on futures in the environment of stochastic

interest rates, which makes end-users more familiar to employ it.

4. Numerical Study

This section presents the calibration method and numerical examples of our pricing models in the
following subsections.

4.1 Calibration Method

As mentioned above, the LMM has the advantage of ease and flexibility in the parameter calibration.
This section provides a mechanism to calibrate simultaneously the actual LIBOR zero curve, cap
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volatilities, and the correlations of LIBOR rates with different terms. We assume that there are n forward
LIBOR rates in an m-factor framework. The calibration procedure is presented in the following steps.

First, we assume that the total volatility structure of F(t,-) is piecewise-constant and depending
solely on the time-to-maturity. Table 1 specifies instantaneous total volatilities applied to each period
for each rate, which depend on the time-to-maturity of a forward. The volatilities can be calculated from
market data and the detailed computational process is presented in Hull (2003).

Table 1: Instantaneous Volatilities of F(t,-)

Instant. Total Vol. | Timet € (¢, t1] | (¢4, t2] (t,, ts] (tn—1,tn]

Fwd Rate: F(t, t;) (21 Dead Dead Dead
F(t t;) vy vy Dead Dead
F(t: tn) Un Un-1 Un—2 U1

Next, we use the historical price data of the forward LIBOR rates to derive a full-rank n X n
instantaneous-correlation matrix X. Thus, X is a positive-definite and symmetric matrix and can be
written as

I = OA0,

where 0 is a real orthogonal matrix and A is a diagonal matrix. Let H = ®A'/? and thus, HH' = X, so
that we can find a suitable n X m matrix G with m-rank (m < n), such that 3¢ = GG’ is a m-rank
correlation matrix and can be used to mimic the market correlation matrix X.

The advantage of this procedure is that we may replace the n-dimensional original Brownian
motion dZ(t) with GdW (t) where dW (t) is an m-dimensional Brownian motion. In other words, we
change the market correlation structure

dZ(t)dZ(t)' = Zdt
to a modeled correlation structure
GAW (t)(GAW (1))’ = GAW (t)dW (t)'G' = GG'dt = 24dL.

The remaining problem is how to choose a suitable matrix G. Rebonato (1999) proposed the
following form for i-th row of G:

cos 0; H}‘=_11 sinf;; if k=12,...,m—1,
Jik = {l’[}‘:_f sin 0; ; if k=m,
fori = 1,2,...,n. By finding a @ that solves the following optimization problem
min 0oy 120 = 2%
and substituting § into G, we obtain a suitable matrix G such that (= GG') is an approximate
correlation matrix for X.

Thirdly, G can be used to distribute the instantaneous total volatility to each Brownian motion
without changing the amount of the instantaneous total volatility.

4.2 Numerical Examination

In this subsection, we provide eight numerical examinations of a 5-year AIROs and a 10-year AIROs
based on the market data. The actual market data is from the U.S. Department of the treasury.’ All the

5 The daily treasury yield curve rate shows on the https://www.treasury.gov/resource-center/data-chart-
center/interest-rates/Pages/TextView.aspx?data=yieldAll.
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data are shown in Table 6 in Appendix C. To construct the initial forward LIBOR rates, we first use the
linear interpolation method to find the yield rate of each tenor in 6 months, 1 year, 1.5 years, ..., 9.5
years, 10 years. Then, we transform these yield rates into the initial forward LIBOR rates by

_1(Ben
F(@T,T+96)= 5 (B(t,T+5) 1)'

where F(t,T,T + §) is the forward LIBOR rate contracted at time t and applied to the period [T, T + ]
with0<t<T<T+6<T and

B(t,T) = exp(=Y(t,T)T),

where Y (¢, T) is the yield rate observed at time t and apply at time T. Equip the calibration methods we
provide in the previous subsection with the market data, all the parameters in the LMM model can be
calibrated as the practical implementation.

With the calibrated parameters, this article employs the Monte Carlo simulation as a benchmark to
examine the accuracy of the pricing formula. The simulation is based on 10,000 sample paths. The 5-
year and 10-year AIROs with notional principal 1 are priced at different quarterly dates. The strike rate
with K = 0,50, and 100 basis points are roughly in-the-money, at-the-money, and out-of-the-money,
respectively.

All results are listed in Table 2, Table 3, Table 4, and Table 5. Levy means the price results of our
pricing formula with the Levy approach. MC means the price results based on the Monte Carlo
simulation method. Furthermore, we also provide the standard error (s.e.) of the Monte Carlo simulation
method. All the results in both tables show that whatever in the different moneyness setting, the
approximate pricing formula is sufficiently accurate.

Table 2: The 5-yr AIRO
K LEVY MC s.e.
2019/03/01

2.2708x 1072 2.2699x 1072 5.0668x 1076
1.8309%x 1072 1.8307x 1072 5.1311x 107°

1.3909% 1072 1.3902x 10~2 5.3089x 10~°

2019/06/03
1.6286x 1072  1.6288x 1072 3.9054x 107°
1.1723x 1072 3.1726x 1072 3.9728x 107°
7.1601x 1072 7.1661x 1073 4.0446% 10~°
2019/09/03
1.2107% 1072 1.2108x 1072 5.1212x 107°
7.4335x 1073 7.4320x 1073 5.2713%x 107°
2.7599x 1073 2.7603x 1073 5.3116x 107
2019/12/02

1.5286x 1072 1.5291x 1072 6.6602x 10~°
1.0682x 1072 1.0682x 1072 6.7196x 107°
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K LEVY MC s.€.

6.0781x 1073 6.0667x 1073 6.9344x 10~°

[*] The prices of the 5-year AIROs are presented in this table. They are
priced via the Levy approach (LEVY) and Monte Carlo simulation (MC) at
different quarterly dates over the past 1 year. SE stands for the standard
error of MC. The market data used are listed in Table 4 in Appendix C. The
notional principal amount is assumed to be $1. The simulation is based on
10000 paths. The strike rates with K = 0,50, and 100 basis points are
roughly in-the-money, at-the-money, and out-of-the-money, respectively.

Table 3: The 5-yr AIRO
K LEVY MC s.e.
2020/03/02

8.3646x 1073 8.3640x 1073 4.4922x 10~°
3.5798x 1073 3.5761x 1073 4.5839%x 10~°

1.2861x 107¢ 1.3192x 107 1.9962x 1077

2020/06/01
3.1956x 1073 3.1887x 1073 1.1787x 107>
8.5107x 1075 8.2404x 1075 4.0409x 107°
6.2689x 1077  6.1962x 1077 4.9115%x 1077
2020/09/01
2.7106x 1073 2.7089x 1073 7.0589x 1076
3.8065x 107 5.1818x 107® 6.6494% 10~
1.2319%x 1071% 1.3570x 10710 57239x 10710
2020/12/01

4.4662%x 1073 4.4503x 1073 8.7220x 107
1.9132x 10™*  1.9364x 10~* 4.4547x 107°

9.8309%x 1077 9.3220x 10™° 6.5884x 10710
[*] The prices of the 5-year AIROs are presented in this table. They are
priced via the Levy approach (LEVY) and Monte Carlo simulation (MC) at
different quarterly dates over the past 1 year. SE stands for the standard
error of MC. The market data used are listed in Table 4 in Appendix C. The
notional principal amount is assumed to be $1. The simulation is based on
10000 paths. The strike rates with K = 0,50, and 100 basis points are

roughly in-the-money, at-the-money, and out-of-the-money, respectively.

Table 4: The 10-yr AIRO
K LEVY MC s.e.
2019/03/01

2.1183x 1072 2.1182x 1072 5.5248x 107°

1.7389x 1072 1.7397x 1072 5.8165x 107°
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K LEVY MC s.€.

1.3595% 1072 1.3597x 1072 6.0983x 107

2019/06/03
1.6813x 1072 1.6806x 1072 4.8942x 107°
1.2747%x 1072 1.2755x 1072 5.1275x 107°
8.6828x 1073  8.6910x 1073 5.4564% 107°
2019/09/03
1.2547%x 1072 1.2554x 1072 6.4411x 107
8.2309x 1073 8.2331x 1073 6.7208% 107°
3.9144x 1073 3.9300x 1073 7.1722%x 107°
2019/12/02

1.5397% 1072 1.5405x 1072 8.4191x 107
1.1234x 1072 1.1221x 1072 8.8889x 107

7.0702x 1073 7.0757x 1073 9.4194x 10~°

[*] The prices of the 5-year AIROs are presented in this table. They are
priced via the Levy approach (LEVY) and Monte Carlo simulation (MC) at
different quarterly dates over the past 1 year. SE stands for the standard
error of MC. The market data used are listed in Table 4 in Appendix C. The
notional principal amount is assumed to be $1. The simulation is based on
10000 paths. The strike rates with K = 0,50, and 100 basis points are
roughly in-the-money, at-the-money, and out-of-the-money, respectively.

Table 5: The 10-yr AIRO
K LEVY MC S.€.
2020/03/02

9.9508x 10™* 9.9580x 10™* 6.8240% 107°
54717x 10™*  5.4852x 10™* 7.1030%x 107°

1.0202x 10~* 1.0139x 10~* 7.0215x 107

2020/06/01
6.4046x 1073  6.4005x 1073 2.3186%x 107>
1.9642x 1073 1.9250x 1073 2.1924x 1075
2.4727x 107* 2.4572x 107* 9.6510x 107
2020/09/01

6.6260x 1073  6.6214x 1073 1.6874x 107>
2.0238x 1073 2.0219%x 1073 1.6751x 1075

1.0243%x 10~* 1.0538x 10~* 4.9152x 107°
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K LEVY MC s.€.
2020/12/01

8.7965x 1073 8.8048x 1073 1.7172x 107>
4.2364%x 1073 4.1889%x 1073 1.7957x 10~5

6.0842x 10™*  6.0693x 10™* 1.1082x 107>

[*] The prices of the 5-year AIROs are presented in this table. They are
priced via the Levy approach (LEVY) and Monte Carlo simulation (MC) at
different quarterly dates over the past 1 year. SE stands for the standard
error of MC. The market data used are listed in Table 4 in Appendix C. The
notional principal amount is assumed to be $1. The simulation is based on
10000 paths. The strike rates with K = 0,50, and 100 basis points are
roughly in-the-money, at-the-money, and out-of-the-money, respectively.

5. Conclusion

We have contributed to the literature by providing the pricing formulas for the options on the average
interest rate under the LMM. As compared with the earlier interest rate models (Vasicek and HW), the
LMM is consistent with the observable yield curve and easier for calibrating the model parameters from
market data. In addition, since the underlying interest rates in the LMM are directly forward LIBOR
rates, it avoids a complex transformation from the unobservable short rates to the associated LIBOR
rates. Thus, pricing AIROs under the LMM is more feasible and tractable for market practitioners.

By comparing with the values obtained via the Monte Carlo, the results of our pricing
formulas have been shown to be sufficiently accurate and robust. Hence, the model developed
here is suitable for practical implementation.
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Appendix A: Hedging by an AIRC is Cheaper than by a Corresponding Caps

Appendix A will show that hedging periodic interest rate risks with an AIRC is cheaper than with
the corresponding interest rate cap. Consider the time flow as follows: 0 < t, < t; <....<t, <tpy1 =
T,withé =t; —t;_; fori =1,2,...,n+ 1. Assume that, at the end of each time period [¢t;, t; 4] for
i =1,2,...,n, we need to pay an interest linked to L(t;,t;) based on a principal a;. We want to hedge
the interest rate risk by controlling the average interest rate lower than K. There are two hedging
approaches.

Firstly, we hedge the separate interest rate risk at time t;, for i = 1,2,...,n, by using the
corresponding caplet with the nominal amount a;, which is defined as follows:

Cap = ¥i-; a;Max(L(t;, t;) — K, 0),
which can make sure that each interest rate lower than K, and thus leads the average interest rate lower
than K.

Secondly, we hedge the average interest rate risk by employing an AIRC with the nominal amount
=1 aj, which is defined as follows:

(Xf=1 )(AM) - K) AT 2K,

AIRC = {
Otherwise,

where K is an exercise rate and
A(T) = l 1 Zn L(tut)

By applying Jensen’s inequality, we can show that the AIRC price is cheaper than the price of
the corresponding cap, and the proof is given as follows:

AIRC = P(0,T) ]Za, { Z, 1 }L(tl,t) k! |7,
= PO a)E [{( (i) Lo 00— K) + 5 Wt t) -

0} 17|

< PO, I)(E}4 @)B¢"[{2h (o) bt ) -

j=1 "]
+
K} |T0] (By Jensen's Inequality)
+P(0, T)anE?" [{L(ty, t) — K}*|Fo]

<ZL L @;P(0, T)EQ [{L(t;, t;) — K}*]

T [P(ti+1,ti+1)/P(Oti+1)
= Z?:l aiP(OJ ti+1)EQ [ Pztll+1+7{)/P(0 T)+1 P(tl+1'T){L(tUt) K}+]

< T aP(0, i) EQ [P (g, THL(t;, ) — K}

ti
< Z?=1 aiP(O' ti+1)EQ i [{L(tl' tl) - K}+]r P(ti+1'T) < 1
= Cap,

which shows that hedging interest rate risk with an AIRC is cheaper than with the corresponding cap.
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Appendix B: The Proof of Theorem 1
Appendix A computes (10) based on the assumption mentioned in Section 3 that
In A(T) ~ N(M,V?),

where M and V2 are defined in (13) and (14). Before the derivation, we present a lemma without proof
which is useful in the derivation of (10).°

Lemma 1 IfY ~ N(0,v?), then the expectation of E[(Xe¥ — K)*] is given as follows:

Xes”’N (‘“(%*V_Z) — KN <_“‘i§)>,

By Lemma 1, (10) can be derived as follows:

where X and K are constants.

B(0,T) (eM%"ZN(T) — KN(

M-InK+V? M—an))

The remaining tasks are computing E" [A(T)] and E@" [A(T)2].
According to Proposition 2, under the forward measure Q7 (= Q»+1), the dynamics of F(t, t;),
i=1,2,...,n,is given as follows:
dF (t,t;) —0 =0
Ty = Yt (0 (G t) — 0 (L tia))dE Ty (6 8) - dZ(D),
=y(&t) o (L tivr, tny)dt +y (8, t) - dZ(E),
where

to(t; tivts tre1) = —(G°(t, tnyr) — GO(t tipr))
We first derive EQT[A (T)] and then EQT[A (T32].

EQ[A(N)] = -3, B [F(t;, )]
= =3y F(O,t)exp (f;' v t) - Bo( tin, trer)dur).

n

EQ[A(T)?] = B2 [BL, F(t;, t)]?

1 T T
= n_z( 1 EC IR, t)?] + 230, X1 EQ [F(tior, ti-)F (4, tj)]),
where
T t;
EQ[F (6, )] = F(0,t)%exp (f,' (2r(w t) - o tin, tnyn) 1l Y () 12)d)
and

T
EQ [F(ti—1, tic)F(t, t)] =
ti—
FO,ti-)F (O, t)exp (Jy' ™ ¥ tima) - o (a i, b )
tj ti—
Iy Y@ ) - o b, taa)du + [37 Y (u, tiy) - ¥ (u, ty)du).

6 The proof of Lemma 1 is available upon request from the authors.
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Appendix C: The Market Data

Table 6 are the daily treasury yield curve rate disclosed by the U.S. Department of the treasury
which are used for the numerical examinations in Section 4.

Table 6: The Daily Treasury Yield Curve Rate

Pricing Date | 6-Month | 1-Year | 2-Year | 3-Year | 5-Year | 7-Year 10-Year
2019-03-01 2.52 2.55 2.55 2.54 2.56 2.67 2.76
2019-06-03 2.31 2.11 1.82 1.79 1.83 1.95 2.07
2019-09-03 1.88 1.72 1.47 1.38 1.35 1.42 1.47
2019-12-02 1.62 1.60 1.61 1.63 1.65 1.77 1.83
2020-03-02 0.95 0.89 0.84 0.85 0.88 1.01 1.10
2020-06-01 0.18 0.17 0.14 0.20 0.31 0.50 0.66
2020-09-01 0.13 0.12 0.13 0.14 0.26 0.46 0.68
2020-12-01 0.10 0.12 0.17 0.22 0.42 0.68 0.92

[*] The daily treasury yield curve rate disclosed by the U.S. Department of the treasury. The treasury

yield curve rates are expressed in percentage.
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